博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
常见数据结构(二)-树(二叉树,红黑树,B树)
阅读量:6214 次
发布时间:2019-06-21

本文共 5889 字,大约阅读时间需要 19 分钟。

hot3.png

常见数据结构(二)-树(二叉树,红黑树,B树)

标签: algorithms


[TOC]


本文介绍数据结构中几种常见的树:二分查找树,2-3树,红黑树,B树

写在前面

  • 本文所有图片均截图自coursera上普林斯顿的课程中的Slides
  • 相关命题的证明可参考
  • 源码可在下载,也可以在我的github仓库 下载,已经使用maven构建
  • 仓库下载:git clone git@github.com:brianway/algorithms-learning.git

Binary Search Tree(二分查找树)

定义:A BST is a binary tree in symmetric order.

A binary tree is either:

  • Empty.
  • Two disjoint binary trees (left and right).

Symmetric order.Each node has a key, and every node’s key is:

  • Larger than all keys in its left subtree.
  • Smaller than all keys in its right subtree.

在java的实现中,每个节点(Node)由四个域组成:key,value,left,right。即:键,值,左子树,右子树。

private class Node {    private Key key;    private Value val;    private Node left, right;    public Node(Key key, Value val) {        this.key = key;        this.val = val;    }}

Binary Search Tree

  • 查找:得到相应键的值,若无此键则返回null.
/* 查找 */public Value get(Key key) {    Node x = root;    while (x != null) {        int cmp = key.compareTo(x.key);        if (cmp < 0) {            x = x.left;        } else if (cmp > 0) {            x = x.right;        } else { // if (cmp == 0)          return x.val;        }    }    return null;}
  • 插入:如果小,往左;如果大,往右;如果null,插入;如果存在,覆盖。
/* 插入 */public void put(Key key, Value val) {    root = put(root, key, val);}/* 辅助函数,递归调用 */private Node put(Node x, Key key, Value val) {    if (x == null) return new Node(key, val);    int cmp = key.compareTo(x.key);    if (cmp < 0) {        x.left = put(x.left, key, val);    } else if (cmp > 0) {        x.right = put(x.right, key, val);    } else { // if (cmp == 0)        x.val = val;    }    return x;}

比较的次数为节点的深度+1,由于插入节点的顺序会有差异,所以树的高度不确定,最坏的情况是N个节点的树高度为N。

  • 删除:列出下面几种处理方法
    • 将值置为null,在树中保留键
    • 删除最小值:一直向左找到左子树为null的节点,用它的右子节点代替它。
    • Hibbard deletion

下面重点讲一下Hibbard deletion,分为三种情况:

  1. 没有子节点的节点,将其parent link置为null即可。
  2. 有一个子节点的节点,删除该节点并以子节点代替即可。
  3. 有两个子节点的节点,找到该节点t的下一个节点x(即右子树的最小节点),在右子树删除这个节点,并将该节点x放到t的位置。
/* 删除 */private Node delete(Node x, Key key) {    if (x == null) return null;    int cmp = key.compareTo(x.key);    if (cmp < 0) {        x.left = delete(x.left, key);    } else if (cmp > 0) {        x.right = delete(x.right, key);    } else {        if (x.right == null) return x.left; // no right child        if (x.left == null) return x.right; // no left child        Node t = x;        x = min(t.right); // replace with successor        x.right = deleteMin(t.right);        x.left = t.left;    }    x.count = size(x.left) + size(x.right) + 1;    return x;}

2-3 Search Trees(2-3树)

在介绍红黑树前,先介绍一下2-3树,便于后面理解红黑树。

2-3树是二分查找树的变形,每个节点是下面两种情况之一:

  • 2-node:一个键,两个分叉(smaller,larger)
  • 3-node:两个键,三个分叉(smaller,between,larger)

2-3 trees

在底部向一个3-node插入。

  • 向3-node插入一个键,临时成为一个4-node
  • 将4-node中间的key移动到父节点
  • 向上重复
  • 如果到了顶端的根节点,且根节点是4-node,将其分成3个2-nodes.

总结起来就是:当插入的值导致节点变四叉时进行分裂,将中间的值传给上一个节点,并将另外两个值作为两个子节点分开,若上一节点也因此变成四叉,依次类推。分裂4-node是一个local transformation,只会进行常数次数的操作。高度加一由且仅由顶节点分裂造成

2-3 trees proof

树的高度,在查找和插入时,保证了logarithmic的性能。

  • Worst case: lg N. [all 2-nodes]
  • Best case: log3 N ≈ 0.631 lg N. [all 3-nodes]

Red-Black BSTs(红黑树)

这里的红黑树均指Left-leaning red-black BSTs。主要是用二叉树的形式来表示2-3树,用一个“内部”的left-leaning连接来表示3-node。red link是2-3tree的三叉节点的连接两个key的内部link,大值作为根节点,小值作为左子节点,故名left leaning 红黑树。

红黑树定义

一个等价的定义,A BST such that:

  • No node has two red links connected to it.
  • Every path from root to null link has the same number of black links.
  • Red links lean left.

红黑树对应2-3树

红黑树的java表示

private static final boolean RED = true;private static final boolean BLACK = false;private class Node {    Key key;    Value val;    Node left, right;    boolean color;// color of parent link}private boolean isRed(Node x) {    if (x == null) return false;    return x.color == RED;}

左转-右转-变色

红黑树插入过程中可能用到的三个基本操作(左转,右转,变色):

  • left rotate
  • right rotate
  • flip colors

下面依次介绍

  • 左转

红黑树左转

/* left rotate */private Node rotateLeft(Node h) {   assert isRed(h.right);   Node x = h.right;   h.right = x.left;   x.left = h;   x.color = h.color;   h.color = RED;   return x;}
  • 右转

红黑树右转

/* right rotate */private Node rotateRight(Node h) {    assert isRed(h.left);    Node x = h.left;    h.left = x.right;    x.right = h;    x.color = h.color;    h.color = RED;    return x;}
  • 变色

红黑树变色

/* flip colors */private void flipColors(Node h) {    assert !isRed(h);    assert isRed(h.left);    assert isRed(h.right);    h.color = RED;    h.left.color = BLACK;    h.right.color = BLACK;}

插入操作

红黑树插入两个节点

从图中可以看出,插入的次序不同,需要转换的操作也不同,分三种情况(图中每一列是一种情况):

  1. 已有a和b时,c插入在b的右子节点,直接变色即可
  2. 已有b和c时,a插入在b的左子节点,先右转把b滑上去,成1中的状态,再变色即可
  3. 已有a和c时,b插入在a的右子节点,先左转把a滑下去,成2中的状态,再右转+变色即可

从上面的分析可以看出,三种情况之间有转换关系,且逐步趋向简单,如下图所示:

红黑树状态转换

根本原因在于,2-3树中,是把3-node中处于中间的那个键传递给父节点,所以在红黑树中,当有一个节点连了两个 red link时,说明这三个点是一个3-node,但次序还需要调整,从而达到中间键在最上的状态,进而变色。而这个这个调整的趋势则是先让b处于a,c中间(即a的父,c的左子,成一条线),再让b成为a,c的父节点,最后变色。记住这个顺序和原因,写代码就简单了,状态3->状态2->状态1

private Node put(Node h, Key key, Value val) {    //insert at bottom (and color it red)    if (h == null) return new Node(key, val, RED);    int cmp = key.compareTo(h.key);    if (cmp < 0) {        h.left = put(h.left, key, val);    } else if (cmp > 0) {        h.right = put(h.right, key, val);    } else {        h.val = val;    }    if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);// lean left    if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);//balance 4-node    if (isRed(h.left) && isRed(h.right)) flipColors(h);//split 4-node    return h;}

红黑树的高度 h <= 2 lg N,证明:

  • Every path from root to null link has same number of black links.
  • Never two red links in-a-row.

B-Trees(B树)

最后简单提一下B树,就是将2-3树一般化,将每个节点的key-link pairs增加到 M - 1

  • At least 2 key-link pairs at root.
  • At least M / 2 key-link pairs in other nodes.
  • External nodes contain client keys.
  • Internal nodes contain copies of keys to guide search.

B-Trees

在B树中查找

  • Start at root.
  • Find interval for search key and take corresponding link.
  • Search terminates in external node.

在B树中插入

  • Search for new key.
  • Insert at bottom.
  • Split nodes with M key-link pairs on the way up the tree.

命题:A search or an insertion in a B-tree of order M with N keys requires between log M-1 N and log M/2 N probes


作者更多文章: | |

转载于:https://my.oschina.net/brianway/blog/758783

你可能感兴趣的文章
Shell运算符:Shell算数运算符、关系运算符、布尔运算符、字符串运算符等
查看>>
ImageIO 操作图片
查看>>
项目总结
查看>>
AngularJs过滤器
查看>>
苏格拉底的名言警句
查看>>
在Excel中插入Flash及解决不能自动播放问题
查看>>
为Dreamweaver写的扩展—jQuery自动提示.
查看>>
BZOJ3786: 星系探索 Splay+DFS序
查看>>
【C#】datetimepicker初始为空值的方法
查看>>
计算机专业的一个四年工作的总结
查看>>
ANT的安装和配置(windows)
查看>>
(转载)Windows 7 Ultimate(旗舰版)SP1 32/64位官方原版下载(2011年5月12日更新版)...
查看>>
django MVC模式 数据库的操作mysql
查看>>
创建私有maven服务器
查看>>
JVM垃圾回收算法
查看>>
[ 转]Collections.unmodifiableList方法的使用与场景
查看>>
C#操作INI
查看>>
Redis 配置文件
查看>>
编程语言和它们的创造者
查看>>
交叉熵损失函数
查看>>